
BY Bipin Sir, YBN University, Ranchi

ENGINEERING

BY Bipin Sir, YBN University, Ranchi

Exploiting Reusable Organizations to Reduce

Complexity in Multiagent System Design

Introduction

Multiagent Systems (MAS) have been seen as a new paradigm to cope with the increasing need

for dynamic applications that adapt to unpredictable situations.Large MAS are often composed

of several autonomous agents engaging incomplex interactions with each other and their

environment. Consequently, providing a correct and effective design for such systems is a

difficult task. Toreduce this complexity, Organization-based Multiagent Systems (OMAS) have

been introduced and they are viewed as an effective paradigm for addressing the design

challenges of large and complex MAS [9, 25]. In OMAS, the organizational perspective is the

main abstraction, which provides a clear separation between agents and system, allowing a

reduction in the complexity of the system. To support the design of OMAS, several

methodologies have been proposed. Nonetheless, one of the major problems with the wide-scale

adoption of OMAS for the development of large-scale applications is that, so far, the

methodologies proposed work well for small systems, but are not well suited for developing.

We say goal g1 precedes goal g2 if g1 must be satisfied before g2 can be

pursued by the organization. Moreover, during the pursuit of specific goals,

events may occur that cause the instantiation of new goals. Instantiated goals

may be parameterized to capture a context sensitive meaning. If an event

e can occur during the pursuit of goal g1 that instantiates goal g2, we say

g1 triggers g2 based on e. GMoDS defines a goal model GM as a tuple

G,Ev, parent, precedes, triggers, root where:

• G: set of organizational goals (where the set GL represent the leaf goals).

• Ev: set of events.

• parent: G → G ; defines the parent goal of a given goal.

• precedes: G → 2G ; indicates all the goals preceded by a given goal.

• triggers: Ev → 2G×G; _g1, g2_ ∈ triggers(e) iff g1 triggers g2 based on e.

• root ∈ G; the root of the goal model.

We organize our roles using a role model that connects the various roles by

protocols. There are two types of roles: internal roles and external roles. Internal

roles are the typical roles defined inside the organization. External roles are

BY Bipin Sir, YBN University, Ranchi

placeholders for roles from an external organization; they represent unknown

roles with which the organization must interface. Eventually external roles will

be replaced by concrete roles (internal roles) from other organizations.We define

our role model RM as a tuple _R, P, participants_ where:

• R: set of internal and external roles

• P: set of protocols

• participants:P → 2R×R; indicates the set of role pairs connected by a protocol

Finally, we define a multiagent organization org as a tuple _GM,RM,

achieves, INCP,OUTCP_ where:

• GM: Goal Model

• RM: Role Model

• achieves: R → 2GL ; indicates the set of leaf goals achieved by given a role.

• INCP: the set of entry connection points exposed by the organization (see

Section 4.3).

• OUTCP: the set of exit connection points exposed by the organization (see

Section 4.3)

*

organizations. Connection points are goals and roles that can be bound together

by events and protocols from connectors. Service providers and service consumers

are both autonomous organizations who respectively provide and use operations

from services. These entities are discussed in detail in the following subsections.

4.1 Services

A service is a logical entity that represents a coarse-grained multiagent

functionality. This coarse-grained functionality is made of a set of fine-grained

functionalities, called operations. Each service possesses an XML-based specification

that contains a description of what the service proposes and provides

a specification of each operation provided. To be functional, a service must be

implemented by at least one provider. Services facilitate reuse in that they allow

consumers to request operations based solely on the service specification.

4.2 Operations and Connectors

An operation represents an implementation of a functionality declared in a

BY Bipin Sir, YBN University, Ranchi

service. From an organizational standpoint, we view an operation as a set of

application-specific organizational goals that an organization needs to achieve

in order to reach a desired state. Operations can result in computations (e.g.

computing an optimal path for a swarm of UAVs) or actions (e.g. neutralizing

an enemy target).

Each operation has a set of preconditions and postconditions, an interaction

protocol, and a request event. The request event is used to invoke the operation

and includes the parameters passed to the operation at initialization. Once the

operation is instantiated, the interaction occurs via the interaction protocol,

which specifies the legal interactions between consumers and providers. The

interaction protocol and the request event form a connector, which provides

the ”glue” that binds consumers and providers together.

4 ServiceModel

In our framework, services are common functionalities encapsulated in

OMAS components. Once designed, OMAS components can be used by other

organizations to build larger systems. Fig. 1 shows our metamodel, comprising

the service and organizational entities along with their relationships. The central

concept is that of Service. Services offer one or more operations. Each operation

possesses a connector that is used to connect connection points exposed by connects the exit

connection point of a consumer to the entry connection point

of a provider using the operation’s connector. This interconnection ensures that

the consumer organization can invoke the operation via the request event and

that both organizations can interact via the interaction protocol. Formally, the

composition of organizations org1 with org2 over a connection point cp1 requiring

an operation op is defined whenever cp1 is an exit connection point from org1

using op and org2 exposes a connection point cp2 providing op. This composition

is denoted org1 _cp1,op org2.

Sometimes, designers may want to compose all exit connection points using

the same operation from only one provider. Thus, we define the composition of

two organizations over an operation as their successive compositions over all the

exit connection points requiring that operation. Hence, for all connection points

BY Bipin Sir, YBN University, Ranchi

cpi from org1 using an operation op, we have:

org1 _op org2 = (...((org1 _cp1,op org2) _cp2,op org2) _... ... _cpn,op org2).

The composition process is iterative and continues until the resulting

composite organization requires no more operations. The result is a standalone

application that uses no external services. Having a single organization

simplifies reorganization tasks by allowing us to reuse existing work concerning

reorganization of single organizations [20, 21, 26].

Next, we formally define the composition process through which reusable

OMAS components can be composed to build larger organizations. We have

a proof sketch that shows this composition will always be correct under certain

conditions, but space would not permit us to put any details in the paper.

Given two organizations org1 = _GM1,RM1, achieves1, INCP1,OUTCP1_,

org2 = _GM2,RM2, achieves2, INCP2,OUTCP2_ , an operation op and two

connection points cp1 from org1 and cp2 from org2 such that cp1 uses op and

cp2 provides op. Given that org3 = _GM,RM, achieves, INCP,OUTCP_, such

that org3 = org1 _cp1,op org2, we define the composite organization org3 in the

next subsections. Without loss of generality, we assume that all goal models have the same

root, which is an AND-decomposed goal called the generic root (GR).

Moreover, we consider that two goals are equal if they are identical and

their parents are identical. This definition of equality of goals ensures that

the union of two goal trees is a tree instead of a graph. Given two goal

models GM1 = _G1,Ev1, parent1, precedes1, triggers1,GR_, and GM2 =

G2,Ev2, parent2, precedes2, triggers2,GR, we define the composite goal model

GM = _G,Ev, parent, precedes, triggers, root_ such that:

root = GR, G = G1 ∪ G2, Ev = Ev1 ∪ Ev2,

parent: ∀g ∈ G, parent(g) = parent1(g) ∪ parent2(g),

precedes: ∀g ∈ G, precedes(g) = precedes1(g) ∪ precedes2(g),

triggers: ∀e ∈ Ev, triggers(e)=

=

⎧⎪⎨

⎪⎩

BY Bipin Sir, YBN University, Ranchi

triggers1(e) ∪ triggers2(e) if e = op.event,

triggers1(e) ∪ triggers2(e) ∪ {(cp1.goal, cp2.goal)}

−{(cp1.goal,∅), (∅, cp2.goal)} if e = op.event.

Note that cp1.goal is an exit goal in GM1 and cp2.goal is an entry goal in GM2.

The composition is illustrated in Fig. 3a, where g2 is an exit goal and g6 is an

entry goal.

5.2 Role Model Composition

Given RM1 = _R1, P1, participants1_, RM2 = _R2, P2, participants2_ , let e1

and e2 be two external roles such that (cp1.role, e1) ∈ participants1(op.protocol)

and (e2, cp2.role) ∈ participants2(op.protocol), where cp1.role is an exit role in

RM1 and cp2.role is an entry role in RM2. We define RM = _R, P, participants_

such that:

R = R1 ∪ R2 − {e1, e2}, P = P1 ∪ P2,

participants: ∀p ∈ P, participants(p)=

=

⎧⎪⎨

⎪⎩

participants1(p) ∪ participants2(p) if p _= op.protocol,

participants1(p) ∪ participants2(p) ∪ {(cp1.role, cp2.role)}

−{(cp1.role, e1), (e2, cp2.role)} if p = op.protocol. The composition of role models we have just

described is illustrated in Fig. 3b.

In this figure, role r2 is an exit role and role r3 is an entry role.

5.3 Organization Composition

Finally, to complete org3, we need to define the achieves function along with the

connection points. The achieves function is defined as:

achieves(r) = achieves1(r) ∪ achieves2(r), ∀r ∈ R.

The sets of entry and exit connection points exposed by org3 are:

INCP = INCP1 ∪ INCP2 − {cp2}.

OUTCP =OUTCP1 ∪ OUTCP2 − {cp1}.

6 Case Study

To demonstrate the validity of our framework for designing OMAS, we design

BY Bipin Sir, YBN University, Ranchi

an application called Cooperative Robotic for Airport Management (CRAM).

In this application, a team of heterogeneous robots is in charge of handling some

aspects of the airport management task. Essentially, the team needs to clean the

building and perform cargos inspections. Suspicious cargos are sent to another

location for further inspection.

In our framework, OMAS components can be present in a repository or come

from the decomposition of the current problem. For this example, we develop

one service, the cleaning service, and explain how it can be used to develop our

CRAM application.

In the organization models presented in this example (Fig. 4, Fig. 5, and

Fig. 6), goals are shown as ovals, internal roles as rectangles, external roles as

round rectangles, precedes and triggers functions as open-head arrows, protocols

as full-head arrows and achieves functions as dashed lines. Conjunctive goals

are connected to their subgoals by diamond-shaped links and disjunctive goals by triangle-

shaped links. Entry goals are identified by being the destination

of a trigger that has no source. Exit goals are always the leaf goals achieved

by exit roles. In the role models, agent capabilities [7] are identified by the

keyword ’requires’. Entry roles specify operations provided by using the keyword

’provides’ while exit roles specify operations required by the keyword ’uses’. Due

to space limits, we do not discuss aspects of the organization irrelevant to our

approach.

6.1 The Cleaning Service

Cooperative cleaning is a common problem in cooperative robotics and several

works have been published regarding the use of robots for cleaning [16, 19, 23].

Here, we propose a Cleaning Service whose main operation is to clean a given

area. We design the Cooperative Cleaning Organization, shown in Fig. 4, which

involves a team of robots coordinating their actions to clean an area. Hence, this

OMAS component provides the Cleaning Service. The entry connection point

providing the clean operation is made of the goal Divide Area and the role

Leader. The Divide Area goal is in charge of dividing an area into smaller areas

that can be handled by individual robots. Once the area to be cleaned has been

BY Bipin Sir, YBN University, Ranchi

divided, the Clean goal is triggered. The Clean goal is decomposed into two

disjunctive goals. Hence, it offers two ways of cleaning; the organization can

decide to either do a deep clean (Deep Clean goal) or just vacuum (Vacuum

goal). The Deep Clean goal is further decomposed into two conjunctive goals:

Sweep and Mop.

6.2 The Cooperative Robotic for Airport Management Organization

Next, we build the CRAM organization that uses the Cleaning Service. Its design

is presented in Fig. 5. The main goal of the system, Manage Airport, has two

conjunctive subgoals that represent the two main tasks of our system: Perform

Cargo Inspection, Operate Sanitary Maintenance. Those goals are in turn

further decomposed into conjunctive leaf goals. For each leaf goal in the CRAM

organization, we design a role that can achieve it. Moreover, we identify that

the Janitor role can use the Cleaning Service for the achievement of the Clean

Floor goal. Thereby, the organization created contains the exit connection point

(identified as goal-role pair): _CleanFloor, Janitor_.

6.3 The Composition Process

In this section, we compose the CRAM application with the cleaning component

in order to obtain a single composite organization. The CRAM uses the clean

operation from the Cleaning Service that is provided by the Cooperative Cleaning

organization. Let cram and cleaning be the CRAM and Cooperative Cleaning

organizations respectively and let cp Janit and cp Lead be the connection points _CleanFloor,

Janitor_ from cram and _DivideArea,Leader_ from cleaning

respectively. We have:

cleaning = _gm svc, rm svc, achieves svc, incp svc, outcp svc_ ,

where goal model gm svc, role model rm svc and achieves function achieves svc

are defined as described in Fig. 4, entry connection points set incp svc =

{cp Lead}, and exit connection points set outcp svc = {}.

cram = _gm app, rm app, achieves app, incp app, outcp app_,

where goal model gm app, rolemodel rm app and achieves function achieves app

are defined as described in Fig. 5, entry connection points set incp app = {},

and exit connection points set outcp app = {cp Janit}.

BY Bipin Sir, YBN University, Ranchi

By composing cram with cleaning over operation clean, we have:

cram _clean cleaning = cram _cp Janit,clean cleaning = cram clean,

such that cram clean = _gm, rm, achieves, incp, outcp_ , where:

gm, rm, achieves are defined as described in Fig. 6,

incp = incp app ∪ incp svc− {cp Lead} = {},

outcp = outcp app ∪ outcp svc− {cp Janit} = {}.

Hence, by composing the cram and cleaning organizations (Fig. 4 and Fig. 5) over

the clean operation specified in the Cleaning Service, we obtain the composed

organization cram clean modeled in Fig. 6.

